Q1

Question

The equations of planes, P_{1}, P_{2} are

$$
P_{1}: \quad r=\left(\begin{array}{c}
-3 \\
10 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
12 \\
3
\end{array}\right)+\beta\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \beta, \lambda \in \mathrm{R} \quad P_{2} \quad r \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=1
$$

Find the coordinates of the foot of perpendicular from the point $A(-3,10,3)$ to the plane P_{2} and show that the point $B(2,10,-2)$ is the reflection of point A in P_{2}.

The planes P_{1} and P_{2} meet in a line L. Find a vector equation in line L.
Plane P_{3} is the reflection of P_{1} in P_{2}. Using the results above, find a vector perpendicular to P_{3}. hence, find, in scalar form, the equation of P_{3}.

Ans: $F,\left(-\frac{1}{2}, 10, \frac{1}{2}\right), L=\left(\begin{array}{c}-1 \\ -2 \\ 0\end{array}\right)+t\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}14 \\ -5 \\ -9\end{array}\right), r\left(\begin{array}{c}14 \\ -5 \\ -9\end{array}\right)=-4$
answer

Q2

Question

Relative to an origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} respectively,
where $\mathbf{a} \cdot \mathbf{b}>0 . A$ and B also lie on a circle with centre C and $A B$ as diameter.
(i) Write down the position vector of C in terms of \mathbf{a} and \mathbf{b}.
(ii) Show that the origin O is outside the circle.
T is a point on the circle with position vector \mathbf{t} and $O T$ is a tangent to the circle.

(iii) Show that $\mathbf{t} \cdot\left(\frac{\mathbf{a}+\mathbf{b}}{2}\right)=|\mathbf{t}|^{2}$;
(iv) By considering the triangle $A T B$, show that the length of $O T$ is given by $(\mathbf{a} \cdot \mathbf{b})^{\frac{1}{2}}$

By considering the area of triangle OTC, show that $|\mathbf{t} \times(\mathbf{a}+\mathbf{b})|=(\mathbf{a} \cdot \mathbf{b})^{\frac{1}{2}}|\mathbf{b}-\mathbf{a}|$
Ans: (i) $\overline{O C}=\frac{\mathbf{a}+\mathbf{b}}{2}$

Answer

Q3
Question
Planes P_{1}, P_{2} and P_{3} have equations

$$
\begin{gathered}
-2 x+z=4 \\
2 x+y-2 z=6 \\
-6 x+4 y+\lambda z=\mu
\end{gathered}
$$

Respectively, where λ and μ are constants.
(i) Find a vector parallel to both P_{1} and P_{2}.

Given that the point with coordinates $(-5, \alpha, \beta)$, lies on P_{1} and P_{2}, find α and β.
Hence find a vector equation of the line of intersection of P_{1} and P_{2}.
(ii) Given that P_{1}, P_{2} and P_{3} form a triangular prism, what can be said about the values of λ and μ ?

Ans: (i) $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \alpha=4, \beta=-6, r=\left(\begin{array}{c}-5 \\ 4 \\ -6\end{array}\right)+\delta\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ (ii) $\lambda=-1, \mu \neq 52$

Answer

Q4
Question
The planes P_{1} and P_{2} have equations $r \cdot\left(\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right)=-1$ and $r \cdot\left(\begin{array}{c}-7 \\ 4 \\ 4\end{array}\right)=1$ respectively.
(i) Find the acute angle between P_{1} and P_{2}.
(ii) The point $A(2, \alpha, 3)$ is equidistant from the planes P_{1} and P_{2}. Calculate the two possible values of α
(iii) Find the position vector of the foot of perpendicular from $B(0,1,2)$ to the plane P_{1}. Hence find the Cartesian equation of the plane P_{3} such that P_{3} is parallel to P_{1} and point B is equidistant from planes P_{1} and P_{3}

Ans: (i) 74.97° (ii) $\alpha=\frac{9}{5}$ or 6 (iii) position vector $\overline{O M}=\frac{1}{3}\left(\begin{array}{l}1 \\ 5 \\ 4\end{array}\right)$, equation of plane $x-2 y+2 z=5$
Answer
\qquad

Q5

Question

The line l_{1} passes through the point $(1,-1,1)$ and is parallel to the vector $\mathbf{2 i}-\mathbf{5} \mathbf{j}+\mathbf{3 k}$.
The line l_{2} has equation $x-1=\frac{2 y+4}{4}=-\frac{z}{2}$
Given that the plane Π_{1} contains l_{1} and is parallel to l_{2}
(i) Find the Cartesian equation of the plane Π_{1}
(ii) Find the shortest distance between Π_{1} and l_{2}, leaving your answer in exact form.

The plane Π_{2} has equation $\mathbf{r} .(\mathbf{3 i}-\mathbf{2 k})=\mathbf{1}$
(iii) Find the acute angle between the planes Π_{1} and Π_{2}
(iv) Determine the geometrical relationship between Π_{2} and l_{1}, showing your working clearly.
(v) Hence what can be said about the values of a and b such that there is no solution for the following system of linear equations?

$$
\begin{gathered}
4 x+7 y+9 z=6 \\
3 x-2 z=1 \\
2 x+y-a z=b
\end{gathered}
$$

Ans: (i) equation of plane $4 x+7 y+9 z=6$ (ii) $\frac{16}{\sqrt{146}}$ (iii) 82.1° (iv) Π_{2} contains l_{1} (v) $a=-\frac{1}{3}, b \neq \frac{4}{3}$

Answer

$\quad\left(\begin{array}{c}2 \\ 1 \\ -a\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -5 \\ 3\end{array}\right)=0$
$\Rightarrow a=-\frac{1}{3}$
Note that $(1,-1,1)$ does not lic on plane
$2 x+y-a z=b$
So $2(1)-1-a(1) \neq b \Rightarrow b \neq \frac{4}{3}$.

Q6
Question
Do not use a calculator in answering this question.
Relative to the origin O, two points A and B have position vectors given by $\mathbf{a}=\boldsymbol{p} \mathbf{i}+\mathbf{j}-\mathbf{3 k}$
and $\mathbf{b}=\mathbf{i}$ respectively.
(i) The point C is on $A B$ such that $A C: C B=2: 1$. Find the position vector of C in terms of p. Hence find the exact area of triangle $O A C$.
(ii) The point D is on $O C$ produced such that $O D=2 C D$. The point E is such that $\overrightarrow{A E}=\overrightarrow{O C}$. Find the area of trapezium OAED.
(iii) Given that the angle between \mathbf{a} and \mathbf{b} is 135°, find the value of p.

Ans: (i) $\overrightarrow{O C}=\frac{1}{3}\left(\begin{array}{c}p+2 \\ 1 \\ -3\end{array}\right)$, area $=\frac{\sqrt{10}}{3}$ (ii) area $=\sqrt{10}$ (iii) $p=-\sqrt{10}$

Answer

Q7

Question

The line l has equation $\frac{x-2}{-1}=\frac{z-a}{1}, \quad y=-1$, where a is a real constant and the plane p_{1} has equation $3 x+y+$ $2 z=5$. The point A has position vector $\mathbf{2 i}+\mathbf{2} \mathbf{j}$ with respect to the origin 0.
(i) Find the acute angle between l and p_{1}.
(ii) Find the perpendicular distance from the point A and p_{1}
(iii) Given that l is the line of intersection of the planes p_{2} and p_{3} with equations $x-4 y+z=6$ and $x-y+b z=c$, where b and c are real constants. Find b and c.
(iv) The point B varies such that the midpoint of $A B$ is always in p_{1}. Find a cartesian equation for the locus of B.

Ans: (i) 10.9° (ii) $\frac{3}{\sqrt{14}}$ (iii) $b=1, c=3$ (iv) $3 x+y+2 z=2$

Answer

Q8

Question

Relative to the origin O, the position vectors of points A and B are \mathbf{a} and \mathbf{b} respectively, where \mathbf{a} and \mathbf{b} are non-zero and non-parallel vectors. The point P on $O A$ is such that $O P: P A=2: 3$. The point Q is such that $O P Q B$ is a parallelogram.
(i) Find $\overrightarrow{O Q}$ in terms of \mathbf{a} and \mathbf{b}
(ii) Show that the area of the triangle $O A Q$ can be written as $k|\mathbf{a} \times \mathbf{b}|$, where k is a constant to be found.
(iii) State the ratio of the area of triangle $O P B$ to area of triangle $O A B$.
(iv) Given $\mathbf{a} \times \mathbf{b}$ is a unit vector, $|\mathbf{a}|=2$ and the angle between \mathbf{a} and \mathbf{b} is 60°, find the exact value of $|\mathbf{b}|$

Ans: (i) $\overrightarrow{O Q}=\frac{2}{5} \mathbf{a}+\mathbf{b}$ (ii) $k=\frac{1}{2}$ (iii) $2: 5$ (iv) $|\mathbf{b}|=\frac{1}{\sqrt{3}}$
Answer

Q9
Question

In the diagram, O is centre of the rectangular base $A B C D$ of a right pyramid with vertex V. Perpendicular unit vectors $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are parallel to $A B, B C, O V$ respectively. The length of $A B, B C, O V$ are 12,6 , and 6 units respectively. The point M is the mid-point of $C V$ and the point O is taken as the origin for position vectors.
(i) Show that the equation of the line AM may be expressed as $\boldsymbol{r}=\left(\begin{array}{c}-6 \\ -3 \\ 0\end{array}\right)+t\left(\begin{array}{l}6 \\ 3 \\ 2\end{array}\right)$, where t is a parameter.
(ii) Find the perpendicular distance from B to the line $A M$.
(iii) Find the acute angle between the line $D V$ and the plane $A M B$.

The plane Π has equation $r .\left(\begin{array}{c}-1 \\ 4 \\ a\end{array}\right)=4$
(iv) Given that the three planes $A M B, A M D$ and Π have no point in common, find the value of a.

Ans: (ii) 6.18 (iii) 47.7° (iv) $a=-3$

Answer

Q10

Question

The plane π_{1} has equation, $r .\left(\begin{array}{l}\alpha \\ \beta \\ 0\end{array}\right)=-30$, where α and β are positive constants, and contains the point A with coordinates $(-10,0,5)$
(i) Given that the perpendicular distance from the origin O to the plane π_{1} is 6 , find α and β

Another plane π_{2} has equation $r \cdot\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=4$
(ii) Find the acute angle between the line $O A$ and the plane π_{2}
(iii) Find a Cartesian equation of the plane π_{3} which contains the line $O A$ and is perpendicular to the plane π_{2}

Ans: (i) $\alpha=3, \beta=4$ (ii) 46.9° (iii) $x-3 y+2 z=0$

Answer

3	(i)	$\begin{aligned} & \text { Since } A \text { lies in the plane } \pi_{1},\left(\begin{array}{c} -10 \\ 0 \\ 5 \end{array}\right)\left(\begin{array}{l} \alpha \\ \beta \\ 0 \end{array}\right)=-30 . \\ & \Rightarrow-10 \alpha=-30 \\ & \Rightarrow \alpha=3 \\ & \hline \text { Perpendicular distance from } O \text { to } \pi_{1}=6 \\ & \Rightarrow \frac{\left\|D_{1} h_{1}\right\|}{\left\|n_{1}\right\|}=6 \\ & \Rightarrow \frac{\|-3\|}{\left\|n_{1}\right\|}=6 \\ & \Rightarrow\left\|n_{1}\right\|=5 \\ & \Rightarrow \alpha^{2}+\beta^{2}=5^{2} \\ & \Rightarrow \beta=4 \end{aligned}$

(ii)	Acute angle between $O A$ and π_{2} $\begin{aligned} & =\sin ^{-1} \frac{\|\overline{O A}\| \mathbf{n}_{2} \mid}{\|\overline{O A}\|\left\|\mathbf{n}_{2}\right\|} \\ & =\sin ^{-1} \frac{\left.\left(\begin{array}{r} 10 \\ 0 \\ 5 \end{array}\right)\left(\begin{array}{r} -1 \\ 1 \\ 2 \end{array}\right) \right\rvert\,}{\left(\begin{array}{r} -10 \\ 0 \\ 5 \end{array}\right)\left\|\left(\begin{array}{r} -1 \\ 1 \\ 2 \end{array}\right)_{2}\right\|} \\ & =\sin ^{-1} \frac{20}{\sqrt{125} \sqrt{6}} \\ & =46.9^{\circ} \end{aligned}$
(iii)	$\left(\begin{array}{r} -10 \\ 0 \\ 5 \end{array}\right) \times\left(\begin{array}{r} -1 \\ 1 \\ 2 \end{array}\right)=\left(\begin{array}{r} -5 \\ 15 \\ -10 \end{array}\right)$ A nomal to plane π_{3} is $\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)$. A cartesian equation is $x-3 y+2 z=0$.

Q11

Question

Referred to the origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} respectively. It is given that \mathbf{a} and \mathbf{b} are perpendicular to each other and have the same magnitude of 3 units each. Given that A, B and C are collinear.
(i) Show that \mathbf{c} can be expressed as $\mathbf{c}=k \mathbf{b}+(1-k) \mathbf{a}$, where k is a constant
(ii) Find $|\mathbf{a} \times \mathbf{c}|$, in terms of k, and state its geometrical meaning.
(iii) It is given that the area of triangle OAC is three times the area of triangle $O A B$. Find the two possible values of k.
Given also that the length of projection of $O C$ onto $O A$ is 12 units, find \mathbf{c} in terms of \mathbf{a} and \mathbf{b}.
Ans: (ii) $|\mathbf{a} \times \mathbf{c}|=9 k$, area of parallelogram with sides $O A$ and $O C$ (iii) $k= \pm 3, \mathbf{c}=-3 \mathbf{b}+4 \mathbf{a}$

Answer

$\begin{aligned} & 10 \\ & \text { (i) } \end{aligned}$	Given A, B and C are collinear, $\begin{aligned} & \overline{A C}=k \overline{A B} \\ & \mathrm{c} \cdots \mathbf{a}=k(\mathrm{~b}-\mathrm{a}) \\ & \mathrm{c}=k \mathbf{b}+(1-k) \mathrm{a} \text { (shown) } \end{aligned}$	
(ii)	$\begin{aligned} \|\mathbf{a} \times \mathbf{c}\| & =\|\mathbf{a} \times[k \mathbf{b}+(1-k) \mathbf{a}]\| \\ & =\|k(\mathbf{a} \times \mathbf{b})+(1-k)(\mathbf{a} \times \mathbf{a})\| \\ & =\|k\| \mathbf{a}\| \| \mathbf{b}\left\|\sin 90^{\circ} \hat{\mathbf{n}}+(1-k) 0\right\| \\ & =9\|k\| \end{aligned}$	
(iii)	It is the area of a parallelogram with sides $O A$ and $O C$. Area of triangle $O A C=3 \times$ area of triangle $O A B$ $\begin{aligned} & \frac{1}{2}\|\mathbf{a} \times \mathbf{c}\|=\frac{3}{2}\|\mathbf{a} \times \mathbf{b}\| \\ & 9\|k\|=3\|a\|\|b\| \sin 90^{\circ} \\ & \quad=27 \\ & \|k\|=3 \\ & k= \pm 3 . \end{aligned}$	
(iv)	Length of projection of $O C$ onto $O A=12$ $\begin{aligned} \frac{\|c \bullet a\|}{\|a\|} & =12 \\ \|c \bullet a\| & =12\|a\| \\ & =36 \end{aligned}$	
	$\begin{aligned} & \text { When } k=3, \mathbf{c}=3 \mathbf{b}-2 \mathbf{a} \\ & \begin{aligned} \|c \bullet a\| & =\|(3 b-2 a)\| \mathfrak{a} \mid \\ & =\|3(b \mid a)-2 a\| l a \mid \\ & =\left\|3(0)-2(3)^{2}\right\| \\ & =18 \end{aligned} \end{aligned}$	

Q12

Question
Referred to the origin O, the position vectors of the points A and C are a and \mathbf{c} respectively, and $O A B C$ is a parallelogram.

Express $\overrightarrow{O B}$ and $\overrightarrow{A C}$ in terms of \mathbf{a} and \mathbf{c}.
Prove that $|\overrightarrow{O B}|^{2}+|\overrightarrow{A C}|^{2}=|\overrightarrow{O A}|^{2}+|\overrightarrow{A B}|^{2}+|\overrightarrow{B C}|^{2}+|\overrightarrow{C O}|^{2}$
Using the result above, what can be said about a and \mathbf{c} when $|\overrightarrow{O B}|=|\overrightarrow{A C}|$?

Ans: \mathbf{a} is perpendicular to \mathbf{c}

Answer

Q13
Question
Referred to an origin O, the position vector of A is $\mathbf{2 i} \mathbf{-} \mathbf{k}$ and the equation of line l is $r=-7 \mathbf{i}+15 \mathbf{j}-5 \mathbf{k}+$ $\lambda(3 \mathbf{i}-7 \mathbf{j}+4 \mathbf{k})$.
(i) Find the position vectors of B and C, both lying on l, such that $A B=A C=10$.
(ii) Given that M is the midpoint of $B C$ and the plane π_{1} contains l and is perpendicular to $A M$, show that the equation of the plane π_{1} is $-3 x+y+4 z=16$.
(iii) The planes π_{2} and π_{3} have equations $x+2 y-3 z=5$ and $x-2 y+z=1$ respectively. Verify that A lies in both π_{2} and π_{3}.
(iv) Determine the position vector of D, the point of intersection between π_{1}, π_{2} and π_{3}.
(v) Hence, or otherwise, find the volume of the tetrahedron $A B C D$. [Volume of tetrahedron $=\frac{1}{3} \times$ area of triangular base \times perpendicular height]

Ans: (i) $\overline{O B}=\left(\begin{array}{c}2 \\ -6 \\ 7\end{array}\right), \overline{O C}=\left(\begin{array}{c}-4 \\ 8 \\ -1\end{array}\right)$ (iv) $\overline{O D}=\left(\begin{array}{l}15 \\ 13 \\ 12\end{array}\right)$ (v) $\frac{962}{3}$

Answer

$12 i$	$\begin{aligned} & \overline{A B}=\left(\begin{array}{c} -9+3 \lambda \\ 15-7 \lambda \\ -4+4 \lambda \end{array}\right) \\ & \|\overline{A B}\|^{\prime}=(-9+3 \lambda)^{2}+(15-7 \lambda)^{2}+(-4+4 \lambda)^{2}=10^{2} \\ & \lambda^{2}-4 \lambda+3=0 \\ & \lambda=3 \text { or } \lambda=1 \\ & \overline{O B}=\left(\begin{array}{c} 2 \\ -6 \\ 7 \end{array}\right) \overline{O C}=\left(\begin{array}{c} -4 \\ 8 \\ -1 \end{array}\right) \end{aligned}$
12ii	$\begin{aligned} & \overline{O M}=\frac{1}{2}\left[\left(\begin{array}{c} 2 \\ -6 \\ 7 \end{array}\right)+\left(\begin{array}{c} -4 \\ 8 \\ -1 \end{array}\right)\right]=\left(\begin{array}{c} -1 \\ 1 \\ 3 \end{array}\right) \\ & \mathrm{n}=\overline{A M}=\left(\begin{array}{c} -1 \\ 1 \\ 3 \end{array}\right)-\left(\begin{array}{c} 2 \\ 0 \\ -1 \end{array}\right)=\left(\begin{array}{c} -3 \\ 1 \\ 4 \end{array}\right) \\ & \mathbf{r} \cdot\left(\begin{array}{c} -3 \\ 1 \\ 4 \end{array}\right)=\left(\begin{array}{c} -7 \\ 15 \\ -5 \end{array}\right) \cdot\left(\begin{array}{c} -3 \\ 1 \\ 4 \end{array}\right) \\ & -3 x+y+4 z=21+15-20 \\ & =16 \end{aligned}$
12iii	Since $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=5$ and $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=1$, A lies in both π_{1} and π_{2}.
12iv	$\begin{aligned} & -3 x+y+4 z=16 \\ & x+2 y-3 z=5 \\ & x-2 y+z=1 \\ & \text { Using GC, } x=15, y=13, z=12 \\ & \overline{O D}=\left(\begin{array}{l} 15 \\ 13 \\ 12 \end{array}\right) \\ & \hline \end{aligned}$
12v	$\begin{aligned} \text { perpendicular height } & =\|\widehat{A M}\| \\ & =\sqrt{9+1+16} \\ & =\sqrt{26} \end{aligned}$

$\overline{B D}$	$=\left(\begin{array}{c}13 \\ 19 \\ 5\end{array}\right), \overline{C D}=\left(\begin{array}{c}19 \\ 5 \\ 13\end{array}\right)$
area of base $=\frac{1}{2}\left[\begin{array}{l}\overline{B D} \times \overline{C D} \mid \\ \\ \\ =\frac{1}{2}\left(\begin{array}{c}222 \\ -74 \\ -296\end{array}\right) \\ \\ =\sqrt{35594} \\ \text { volume }\end{array}=\frac{1}{3} \times \sqrt{26} \times \sqrt{35594}\right.$	
	$=\frac{962}{3}$ units

Q14

Question

Referred to the origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} respectively. It is given that $|\mathbf{a}|=3,|\mathbf{b}|=$ 5 and $|3 \mathbf{a}-\mathbf{b}|=10$.
(i) Give the geometrical interpretation of $\left|\mathbf{a} \cdot \frac{\mathbf{b}}{|\mathbf{b}|}\right|$.
(ii) Show that $\mathbf{a} \cdot \mathbf{b}=1$
(iii) Hence find the shortest distance from A to the line $O B$, and the area of the triangle $O A B$.
(iv) Given that $\mathbf{a}, 2 \mathbf{a}+3 \mathbf{b}$ and $\mu \mathbf{a}+2 \mathbf{b}$, where μ is a constant, are position vectors of collinear points, find μ.

Ans: (i) length of projection of $\overline{O A}$ onto $\overline{O B}$ (iii) distance $=\frac{1}{5}$, area $=7.48$ (iv) $\mu=\frac{5}{3}$

Answer

$\begin{aligned} & 6(i) \\ & {[1]} \end{aligned}$	$\|\mathrm{a}-\mathrm{b}\|$ \|represents the length of projection of $\overline{O A}$ onto $\overrightarrow{O B}$.
$\begin{aligned} & \text { (ii) } \\ & {[2]} \end{aligned}$	$\begin{aligned} \|3 a-b\|^{2} & =10^{2}=100 \\ 9\|a\|^{2}+\|b\|^{2}-6 a \cdot b & =100 \\ 6 \mathrm{a} \cdot b & =9(3)^{2}+(5)^{2}-100=6 \end{aligned}$ Therefore $\mathrm{a} \cdot \mathrm{b}=1$.
(iii) [2]	Let N be the foot of the perpendicular from A to the line $O B$. $O N=\left\|\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\| \mid}\right\|=\frac{1}{5} .$ Using Pythagoras Theorem,

Qn. [Marks]	Solution
	$\begin{aligned} & A N^{2}=O A^{2}-O N^{2}=3^{2}-\left(\frac{1}{5}\right)^{2}=\frac{224}{25} \\ & \therefore \\ & A N=\sqrt{\frac{224}{25}}=\frac{4}{5} \sqrt{14}=2.9933=2.99(3 \mathrm{sf}) \end{aligned}$ Area of triangle $O A B=\frac{1}{2} O B \times A N=2 \sqrt{14}=7.48$ (3sf).
(iv)	$(\mu \mathbf{a}+2 \mathbf{b})-\mathbf{a}=k[(2 \mathbf{a}+3 \mathbf{b})-\mathbf{a}]$ for some constant k. Now, $\|a\| \neq 0,\|b\| \neq 0$ and $\|a-b\|=1 \neq\|a\|\|b\|$, so a and b are non-zero and non-parallel vectors. $\begin{aligned} (\mu-1) \mathbf{a}+2 \mathbf{b} & =k \mathbf{a}+3 k \mathbf{b} \\ (\mu-1-k) \mathbf{a} & =(3 k-2) \mathbf{b} \end{aligned}$ Hence $3 k-2=0 \Rightarrow k=\frac{2}{3}$ and $\mu=k+1=\frac{5}{3}$.

Q15

Question:

The diagram shows a cuboid with rectangular base $O A B C$ and top $E F G H$, where $O A=4$ units, $O C=3$ units and $O E=2$ units. The point O is taken as the origin and unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}, are taken along ($A, O C$ and $O E$ respectively.
(i) Find the cartesian equation of the plane p which contains the points A, C and E.
(ii) Find the acute angle between p and the base $O A B C$.

The line l, passing through O, is perpendicular to p and intersects the plane containing B, C, C and H at the point T.
(iii) Find the position vector of the point T and deduce the perpendicular distance from T to p. [5]
(iv) A point Q lies on the line passing through C and T such that its distance from p is twice that of the distance from T to p. Find the possible position vectors of the point Q.

Solution

The possible position vectors of the point Q are
$\frac{1}{2}\left(\begin{array}{c}9 \\ 6 \\ 18\end{array}\right)$ and $\frac{1}{2}\left(\begin{array}{c}-9 \\ 6 \\ -18\end{array}\right)$
Q16

Question:

The diagram shows a vehicle ramp $O B C D E F$ with horizontal rectangular base $O D E F$ and vertical rectangular face $O B C D$. Taking the point O as the origin, the perpendicular unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to the edges $O F, O D$ and $O B$ respectively. The lengths of $O F, O D$ and $O B$ are $2 h$ units, 3 units and h units respectively,
(i) Show that $\overrightarrow{O C}=3 \mathbf{j}+h \mathbf{k}$.
(ii) The point P divides the segment $B C$ in the ratio $2: 1$. Find $O P$ in terms of h. [1
(iii) A vector parallel to the normal of the plane $B C E F$ is given as $a \mathbf{i}+b \mathbf{k}$. By the use of a scalar product, find the value of $\frac{a}{b}$. Hence find the Cartesian equation of the plane $B C E F$ in terms of h.
(iv) Take $h=3$. Find the shortest distance from the point $Q(1,2,2)$ to the plane $O P F$

Solution:

7(i)	$\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C}=\left(\begin{array}{l}0 \\ 0 \\ h\end{array}\right)+\left(\begin{array}{l}0 \\ 3 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 3 \\ h\end{array}\right)$
7(ii)	By ratio theorem $\overrightarrow{O P}=\frac{2 \overrightarrow{O C}+\overrightarrow{O B}}{3}$ $=\frac{1}{3}\left[\left(\begin{array}{c} 0 \\ 6 \\ 2 h \end{array}\right)+\left(\begin{array}{l} 0 \\ 0 \\ h \end{array}\right)\right]=\left(\begin{array}{l} 0 \\ 2 \\ h \end{array}\right)$
7(iii)	Select a suitable direction vector parallel to the plane such as $\overrightarrow{B E}=\overrightarrow{O E}-\overrightarrow{O B}$ $=\left(\begin{array}{c} 2 h \\ 3 \\ 0 \end{array}\right)-\left(\begin{array}{l} 0 \\ 0 \\ h \end{array}\right)=\left(\begin{array}{c} 2 h \\ 3 \\ -h \end{array}\right) .$ Thus $\overrightarrow{B E} \cdot(a \mathbf{i}+b \mathbf{k})=0$ $\Rightarrow\left(\begin{array}{c} 2 h \\ 3 \\ -h \end{array}\right) \cdot\left(\begin{array}{l} a \\ 0 \\ b \end{array}\right)=0 \Rightarrow \frac{a}{b}=\frac{1}{2}$ Since C is on the plane, $\left(\begin{array}{l}0 \\ 3 \\ h\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)=2 h$ $\Rightarrow \mathbf{r} \cdot\left(\begin{array}{l} 1 \\ 0 \\ 2 \end{array}\right)=2 h \Rightarrow x+2 z=2 h$
7(iv)	Given that $h=3, \overrightarrow{O P}=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right), \overrightarrow{O F}=\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)$ $\mathbf{n}=\left(\begin{array}{l} 0 \\ 2 \\ 3 \end{array}\right) \times\left(\begin{array}{l} 6 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{c} 0 \\ 18 \\ -12 \end{array}\right)=6\left(\begin{array}{c} 0 \\ 3 \\ -2 \end{array}\right)$ The equation of plane $O P F$ is $\mathbf{r} \cdot\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right)=0$ Shortest distance $=\frac{\left\|\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right)\right\|}{\sqrt{0^{2}+3^{2}+2^{2}}}=\frac{2}{\sqrt{13}}$ units.

The diagram below shows a figure made up of a pyramid and a cuboid. The pyramid has a square base $O A B C$ of side 6 units. The vertex D is 4 units vertically above R, the midpoint of $O C$. The cuboid shares the same square base and is of height 3 units.

With O as the origin and using the unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} given in the diagram,
(i) show that the position vector of point P is $4 \mathbf{i}+\mathbf{j}+\frac{4}{3} \mathbf{k}$, where P lies on $A D$ such that $A P: P D=1: 2$,
(ii) find the position vector of point Q in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}, where Q is the midpoint of $F G$. Hence, find the area of triangle $O P Q$.

Solution:

Solution
(i) $\overrightarrow{O D}=3 \mathbf{j}+4 \mathbf{k}$
$\overrightarrow{O P}=\frac{2 \overrightarrow{O A}+\overrightarrow{O D}}{3}$

$=\frac{2(6 \mathbf{i})+3 \mathbf{j}+4 \mathbf{k}}{3}$
$=4 \mathbf{i}+\mathbf{j}+\frac{4}{3} \mathbf{k}$
OR
(ii) $\overrightarrow{O Q}=\frac{\overrightarrow{O F}+\overrightarrow{O G}}{2}$
$=\frac{(-3 \mathbf{k}+6 \mathbf{i})+(6 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k})}{2}$
Area of triangle $O P Q$
$=\frac{12 \mathbf{i}+6 \mathbf{j}-6 \mathbf{k}}{2}$
$=6 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$

Area of triangle $O P Q$
$=\frac{1}{2}|\overrightarrow{O P} \times \overrightarrow{O Q}|$
$=\frac{1}{2}\left|\left(4 \mathbf{i}+\mathbf{j}+\frac{4 \mathbf{k}}{3}\right) \times(6 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k})\right|$

$$
\begin{aligned}
& =\frac{1}{2}|\overrightarrow{O P} \times \overrightarrow{O Q}| \\
& =\frac{1}{2}\left|4 \mathbf{i}+\frac{4 \mathbf{k}}{3} \times 6 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}\right|
\end{aligned}
$$

$2|(3)|$
$\left.=\frac{1}{2}\left(\begin{array}{c}4 \\ 1 \\ \frac{4}{3}\end{array}\right) \times\left(\begin{array}{c}6 \\ 3 \\ -3\end{array}\right) \right\rvert\,$
$=\frac{1}{2}\left|4 \mathbf{i} \times 6 \mathbf{i}+4 \mathbf{i} \times 3 \mathbf{j}-4 \mathbf{i} \times 3 \mathbf{k}+\mathbf{j} \times 6 \mathbf{i}+\mathbf{j} \times 3 \mathbf{j}-\mathbf{j} \times 3 \mathbf{k}+\frac{4}{3} \mathbf{k} \times 6 \mathbf{i}+\frac{4}{3} \mathbf{k} \times 3 \mathbf{j}-\frac{4}{3} \mathbf{k} \times 3 \mathbf{k}\right|$
$=\frac{1}{2}|\mathbf{0}+12 \mathbf{k}-12 \mathbf{j}-6 \mathbf{k}+\mathbf{0}-3 \mathbf{i}-8 \mathbf{j}-4 \mathbf{i}-\mathbf{0}|$
$=\frac{1}{2}\left|\left(\begin{array}{c}-3-4 \\ -(-12-8) \\ 12-6\end{array}\right)\right|$
$=\frac{1}{2} \sqrt{(-7)^{2}+20^{2}+6^{2}}$
$=11.0$ units 2
$=\frac{1}{2} \sqrt{(-7)^{2}+(20)^{2}+6^{2}}$
$=11.0$ units 2

