Q1

Question

Relative to an origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} respectively, where $\mathbf{a} \cdot \mathbf{b}>0 . A$ and B also lie on a circle with centre C and $A B$ as diameter.
(i) Write down the position vector of C in terms of \mathbf{a} and \mathbf{b}.
(ii) Show that the origin O is outside the circle.
T is a point on the circle with position vector \mathbf{t} and $O T$ is a tangent to the circle.

(iii) Show that $\mathbf{t} \cdot\left(\frac{\mathbf{a}+\mathbf{b}}{2}\right)=|\mathbf{t}|^{2}$;
(iv) By considering the triangle $A T B$, show that the length of $O T$ is given by $(\mathbf{a} \cdot \mathbf{b})^{\frac{1}{2}}$

By considering the area of triangle OTC, show that $|\mathbf{t} \times(\mathbf{a}+\mathbf{b})|=(\mathbf{a} \cdot \mathbf{b})^{\frac{1}{2}}|\mathbf{b}-\mathbf{a}|$

Answer

Q2
Question

Referred to the origin O, \mathbf{a} and \mathbf{b} are two non-zero and non-parallel vectors denoting the position vectors of the points A and B respectively.

If a point C has a position vector \mathbf{c} such that $\mathbf{c}=(\mathbf{a} . \mathbf{a}) \mathbf{a}+(\mathbf{a} . \mathbf{b}) \mathbf{b}$,
(i) What can you say about the points O, A, B and C.
(ii) Given that $O B C A$ is a parallelogram, find $|\mathbf{a}|$.

The point U is the mid-point of $O A$ and the point V on $O B$ is such that $O V: V B=3: 2$.
The point N lies on $U V$ such that $U N: U V=2: 3$.
(iii) Find $\overrightarrow{O N}$ in terms of \mathbf{a} and \mathbf{b}
(iv) If the angle $A O B$ is $\frac{\pi}{3}$, find the area of triangle $O U N$, giving your answer in terms of $|\mathbf{b}|$

Answer

Q3
Question
Do not use a calculator in answering this question.
Relative to the origin O, two points A and B have position vectors given by $\mathbf{a}=\boldsymbol{p} \mathbf{i}+\mathbf{j}-\mathbf{3 k}$
and $\mathbf{b}=\mathbf{i}$ respectively.
(i) The point C is on $A B$ such that $A C: C B=2: 1$. Find the position vector of C in terms of p. Hence find the exact area of triangle $O A C$.
(ii) The point D is on $O C$ produced such that $O D=2 C D$. The point E is such that $\overrightarrow{A E}=\overrightarrow{O C}$. Find the area of trapezium OAED.
(iii) Given that the angle between \mathbf{a} and \mathbf{b} is 135°, find the value of p.

Answer

Q4
Question
Relative to origin O, the points A, B and C have position vectors \mathbf{a}, \mathbf{b} and $\mathbf{a}+\mathbf{b}$ respectively. The point X is on $A B$ produced such that $A B: A X$ is $1: 5$ and the point Y is such that $A C X Y$ is a parallelogram. Given that the area of the triangle $O A B$ is 1 square unit and \mathbf{b} is a unit vector.
(i) Find in terms of \mathbf{a} and \mathbf{b}, the position vectors of X and Y. Hence show that $O A B Y$ is a trapezium.
(ii) Give a geometrical meaning of $|(\mathbf{a}+\mathbf{b}) . \mathbf{b}|$
(iii) Find the area of $A C X Y$. Hence find the shortest distance from X to the line that passes through the points A and C.

Answer

Q5

Question

Relative to the origin O, the position vectors of points A and B are \mathbf{a} and \mathbf{b} respectively, where \mathbf{a} and \mathbf{b} are non-zero and non-parallel vectors. The point P on $O A$ is such that $O P: P A=2: 3$. The point Q is such that $O P Q B$ is a parallelogram.
(i) Find $\overrightarrow{O Q}$ in terms of \mathbf{a} and \mathbf{b}
(ii) Show that the area of the triangle $O A Q$ can be written as $k|\mathbf{a} \times \mathbf{b}|$, where k is a constant to be found.
(iii) State the ratio of the area of triangle $O P B$ to area of triangle $O A B$.
(iv) Given $\mathbf{a} \times \mathbf{b}$ is a unit vector, $|\mathbf{a}|=2$ and the angle between \mathbf{a} and \mathbf{b} is 60°, find the exact value of |b|

Q6
Question
Referred to the origin O, the points A and B have position vectors \mathbf{a} and \mathbf{b} respectively. It is given that \mathbf{a} and \mathbf{b} are perpendicular to each other and have the same magnitude of 3 units each. Given that A, B and C are collinear.
(i) Show that \mathbf{c} can be expressed as $\mathbf{c}=k \mathbf{b}+(1-k) \mathbf{a}$, where k is a constant
(ii) Find $|\mathbf{a} \times \mathbf{c}|$, in terms of k, and state its geometrical meaning.
(iii) It is given that the area of triangle $O A C$ is three times the area of triangle $O A B$. Find the two possible values of k.
Given also that the length of projection of $O C$ onto $O A$ is 12 units, find \mathbf{c} in terms of a and \mathbf{b}.

Answer

$\begin{array}{\|l\|} \hline 10 \\ \text { (i) } \\ \hline \end{array}$	Given A, B and C are collinear, $\begin{aligned} & \overline{A C}=k \overline{A B} \\ & \mathbf{c}-\mathbf{a}=k(\mathrm{~b}-\mathrm{a}) \\ & \mathrm{c}=k \mathbf{b}+(1-k) \mathrm{a} \text { (shown) } \end{aligned}$	
(ii)	$\begin{aligned} \|\mathbf{a} \times \mathbf{c}\| & =\mid \mathbf{a} \times[k \mathbf{b}+(1-k) \mathbf{a}] \\ & =\|k(\mathbf{a} \times \mathbf{b})+(1-k)(\mathbf{a} \times \mathbf{a})\| \\ & =\|k\| \mathbf{a}\| \| \mathbf{b}\left\|\sin 90^{\circ} \hat{\mathbf{n}}+(1-k) 0\right\| \\ & =9\|k\| \end{aligned}$	
	It is the area of a parallelogram with sides	
(iii)	Area of triangle $O A C=3 \times$ area of triangle $O A B$ $\begin{aligned} & \frac{1}{2}\|\mathbf{a} \times \mathbf{c}\|=\frac{3}{2}\|\mathbf{a} \times \mathbf{b}\| \\ & 9\|k\|=3\|a\|\|b\| \sin 90^{\circ} \\ & \quad=27 \\ & \|k\|=3 \\ & k= \pm 3 . \end{aligned}$	
(iv)	Length of projection of $O C$ onto $O A=12$ $\begin{aligned} \frac{\|c \bullet a\|}{\|a\|} & =12 \\ \|c \bullet a\| & =12\|a\| \\ & =36 \end{aligned}$	
	$\begin{aligned} & \text { When } k=3, \mathbf{c}=3 \mathbf{b}-2 \mathbf{a} \\ & \begin{aligned} \|c \bullet a\| & =\|(3 \mathrm{~b}-2 \mathrm{a})\| \mathrm{a} \mid \\ & =\|3(\mathrm{~b} \mid \mathrm{a})-2 \mathrm{a}\| \mathrm{a} \mid \\ & =\left\|3(0)-2(3)^{2}\right\| \\ & =18 \end{aligned} \end{aligned}$	
	$\begin{aligned} & \text { When } k=-3, c=-3 \mathrm{~b}+4 \mathrm{a} \\ & \|\mathrm{c} \bullet \mathrm{a}\| \end{aligned}=\|(-3 \mathrm{~b}+4 \mathrm{a}) \mathrm{Ca}\|, \begin{aligned} & \\ &=\mid-3(\mathrm{~b}[\mathbf{a})+4 \mathrm{a}\|\mathrm{a}\| \\ &=\left\|-3(0)+4(3)^{2}\right\| \\ &=36 \end{aligned}$	

