The equations of planes, P_1 , P_2 are

$$P_1: \quad r = \begin{pmatrix} -3\\10\\3 \end{pmatrix} + \lambda \begin{pmatrix} -2\\12\\3 \end{pmatrix} + \beta \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \beta, \lambda \in \mathbb{R} \qquad P_2 \quad r \cdot \begin{pmatrix} -1\\0\\1 \end{pmatrix} = 1$$

Find the coordinates of the foot of perpendicular from the point A(-3, 10, 3) to the plane P_2 and show that the point B(2, 10, -2) is the reflection of point A in P_2 .

The planes P_1 and P_2 meet in a line L. Find a vector equation in line L.

Plane P_3 is the reflection of P_1 in P_2 . Using the results above, find a vector perpendicular to P_3 . hence, find, in scalar form, the equation of P_3 .

Ans:
$$F, \left(-\frac{1}{2}, 10, \frac{1}{2}\right), L = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 14 \\ -5 \\ -9 \end{pmatrix}, r. \begin{pmatrix} 14 \\ -5 \\ -9 \end{pmatrix} = -4$$

answer

8 Let F be the foot of perpendicular from A to the plane P₂.
Equation of line AF is given by
$$r = \begin{bmatrix} -3\\ 10\\ 3 \end{bmatrix} + s \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$$
, $s \in \mathbb{R}$
Since F lies on the line, $\overline{OF} = \begin{bmatrix} -3\\ 10\\ 3 \end{bmatrix} + s \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$, for some $s \in \mathbb{R}$.
Since F also lies on plane P₂,
 $\begin{bmatrix} -3-*\\ 10\\ 3+s \end{bmatrix} \cdot \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} = 1 \implies (3+s)+(3+s) = 1 \implies s = -\frac{5}{2}$
Therefore, $\overline{OF} = \begin{bmatrix} -3\\ 10\\ 3 \end{bmatrix} - \frac{5}{2} \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} -1\\ 2\\ 10\\ \frac{1}{2} \end{bmatrix}$
Coordinates of foot of perpendicular = $\left(-\frac{1}{2}, 10, \frac{1}{2}\right)$.
By ratio theorem, $\overline{OF} = \overline{OA} + \overline{OB}$

Planes P_1 , P_2 and P_3 have equations

$$-2x + z = 4$$
$$2x + y - 2z = 6$$
$$-6x + 4y + \lambda z = \mu$$

Respectively, where λ and μ are constants.

- (i) Find a vector parallel to both P_1 and P_2 . Given that the point with coordinates $(-5, \alpha, \beta)$, lies on P_1 and P_2 , find α and β . Hence find a vector equation of the line of intersection of P_1 and P_2 .
- (ii) Given that P_1 , P_2 and P_3 form a triangular prism, what can be said about the values of λ and μ ?

Ans: (i)
$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $\alpha = 4, \beta = -6$, $r = \begin{pmatrix} -5 \\ 4 \\ -6 \end{pmatrix} + \delta \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ (ii) $\lambda = -1$, $\mu \neq 52$

Answer

The planes
$$P_1$$
 and P_2 have equations $r.\begin{pmatrix} -1\\-2\\2 \end{pmatrix} = -1$ and $r.\begin{pmatrix} -7\\4\\4 \end{pmatrix} = 1$ respectively.

- (i) Find the acute angle between P_1 and P_2 .
- (ii) The point $A(2, \alpha, 3)$ is equidistant from the planes P_1 and P_2 . Calculate the two possible values of α
- (iii) Find the position vector of the foot of perpendicular from B(0, 1, 2) to the plane P_1 . Hence find the Cartesian equation of the plane P_3 such that P_3 is parallel to P_1 and point B is equidistant from planes P_1 and P_3

Ans: (i) 74.97° (ii) $\alpha = \frac{9}{5}$ or 6 (iii) position vector $\overline{OM} = \frac{1}{3} \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$, equation of plane x - 2y + 2z = 5

Answer

8(i) The acute angle between p_1 and p_2

The line l_1 passes through the point (1, -1, 1) and is parallel to the vector 2i - 5j + 3k.

The line l_2 has equation $x - 1 = \frac{2y+4}{4} = -\frac{z}{2}$

Given that the plane Π_1 contains l_1 and is parallel to l_2

- (i) Find the Cartesian equation of the plane Π_1
- (ii) Find the shortest distance between Π_1 and l_2 , leaving your answer in exact form.

The plane Π_2 has equation r. (3i - 2k) = 1

- (iii) Find the acute angle between the planes Π_1 and Π_2
- (iv) Determine the geometrical relationship between Π_2 and l_1 , showing your working clearly.
- (v) Hence what can be said about the values of *a* and *b* such that there is no solution for the following system of linear equations?

$$4x + 7y + 9z = 6$$
$$3x - 2z = 1$$
$$2x + y - az = b$$

Ans: (i) equation of plane 4x + 7y + 9z = 6 (ii) $\frac{16}{\sqrt{146}}$ (iii) 82.1° (iv) Π_2 contains l_1 (v) $a = -\frac{1}{3}$, $b \neq \frac{4}{3}$

Answer

Q4

The planes p_1 and p_2 have Cartesian equations 2x + y - 3z = -5 and

5x - 7y + 2z = -3 respectively and meet in a line *l*.

- (i) Find the acute angle between p_1 and p_2
- (ii) Find a vector equation of l

The line l_1 passes through the point A with position vector – **2k**, is parallel to p_1 and is perpendicular to l.

- (iii) Explain briefly why l and l_1 are skew lines.
- (iv) Find a vector equation of l_1

The plane $p_{\rm 3}$ contains $l_{\rm 1}$ and is parallel to $p_{\rm 1}$

- (v) Find the perpendicular distance between p_1 and p_3
- (vi) Hence state the perpendicular distance between l and l_1 .

Ans: (i) 84.8° (ii)
$$r = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (iv) $r = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -5 \\ 1 \end{pmatrix}$ (v) $\frac{11}{\sqrt{14}}$ (vi) $\frac{11}{\sqrt{14}}$

Answer

