Q1

Question

The equations of planes, P_{1}, P_{2} are

$$
P_{1}: \quad r=\left(\begin{array}{c}
-3 \\
10 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
12 \\
3
\end{array}\right)+\beta\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \beta, \lambda \in \mathrm{R} \quad P_{2} \quad r \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=1
$$

Find the coordinates of the foot of perpendicular from the point $A(-3,10,3)$ to the plane P_{2} and show that the point $B(2,10,-2)$ is the reflection of point A in P_{2}.

The planes P_{1} and P_{2} meet in a line L. Find a vector equation in line L.
Plane P_{3} is the reflection of P_{1} in P_{2}. Using the results above, find a vector perpendicular to P_{3}. hence, find, in scalar form, the equation of P_{3}.

Ans: $F,\left(-\frac{1}{2}, 10, \frac{1}{2}\right), L=\left(\begin{array}{c}-1 \\ -2 \\ 0\end{array}\right)+t\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}14 \\ -5 \\ -9\end{array}\right), r \cdot\left(\begin{array}{c}14 \\ -5 \\ -9\end{array}\right)=-4$
answer

Q2
Question
Planes P_{1}, P_{2} and P_{3} have equations

$$
\begin{gathered}
-2 x+z=4 \\
2 x+y-2 z=6 \\
-6 x+4 y+\lambda z=\mu
\end{gathered}
$$

Respectively, where λ and μ are constants.
(i) Find a vector parallel to both P_{1} and P_{2}.

Given that the point with coordinates $(-5, \alpha, \beta)$, lies on P_{1} and P_{2}, find α and β.
Hence find a vector equation of the line of intersection of P_{1} and P_{2}.
(ii) Given that P_{1}, P_{2} and P_{3} form a triangular prism, what can be said about the values of λ and μ ?

Ans: (i) $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \alpha=4, \beta=-6, r=\left(\begin{array}{c}-5 \\ 4 \\ -6\end{array}\right)+\delta\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ (ii) $\lambda=-1, \mu \neq 52$

Answer

Q3
Question
The planes P_{1} and P_{2} have equations $r \cdot\left(\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right)=-1$ and $r \cdot\left(\begin{array}{c}-7 \\ 4 \\ 4\end{array}\right)=1$ respectively.
(i) Find the acute angle between P_{1} and P_{2}.
(ii) The point $A(2, \alpha, 3)$ is equidistant from the planes P_{1} and P_{2}. Calculate the two possible values of α
(iii) Find the position vector of the foot of perpendicular from $B(0,1,2)$ to the plane P_{1}. Hence find the Cartesian equation of the plane P_{3} such that P_{3} is parallel to P_{1} and point B is equidistant from planes P_{1} and P_{3}

Ans: (i) 74.97° (ii) $\alpha=\frac{9}{5}$ or 6 (iii) position vector $\overline{O M}=\frac{1}{3}\left(\begin{array}{l}1 \\ 5 \\ 4\end{array}\right)$, equation of plane $x-2 y+2 z=5$

Answer

	$\begin{array}{ll} \therefore \frac{-5+2 \alpha}{3}\left\|=\left\|\frac{3-4 \alpha}{9}\right\|\right. & \\ \frac{-5+2 \alpha}{3}=\frac{3-4 \alpha}{9} & \frac{-5+2 \alpha}{3}=-\frac{3-4 \alpha}{9} \\ -15+6 \alpha=3-4 \alpha & \text { or } \\ 10 \alpha=18+6 \alpha=-3+4 \alpha \\ 2 \alpha=12 \\ \alpha=\frac{18}{10}=\frac{9}{5}=1 \frac{4}{5} & \alpha=\frac{12}{2}=6 \end{array}$
8(iii)	Let M be the position vector of the foot of perpendicular from B to p_{1}. Equation of line segment $B M$ $r=\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{c} -1 \\ -2 \\ 2 \end{array}\right)$ When line segment $B M$ intersects p_{1}. $\begin{aligned} & \left(\begin{array}{c} -\lambda \\ 1-2 \lambda \\ 2+2 \lambda \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ -2 \\ 2 \end{array}\right)=-1 \\ & \lambda-2+4 \lambda+4+4 \lambda=-1 \\ & \lambda=-\frac{1}{3} \\ & \therefore \overline{O M}=\frac{1}{3}\left(\begin{array}{l} 1 \\ 5 \\ 4 \end{array}\right) \end{aligned}$ Let point M^{\prime} be a point in plane p_{3} such that $\overline{M B}=\overline{B M}$. $\begin{aligned} & \overline{M B}=\overline{B M^{\prime}} \\ & \overline{O M^{\prime}}=2 \overline{O B}-\overline{O M} \\ & \overline{O M^{\prime}}=2\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right)-\frac{1}{3}\left(\begin{array}{l} 1 \\ 5 \\ 4 \end{array}\right)=\frac{1}{3}\left(\begin{array}{r} -1 \\ 1 \\ 8 \end{array}\right) \end{aligned}$ Equation of plane p_{3} $\begin{aligned} & \text { r. }\left(\begin{array}{c} -1 \\ -2 \\ 2 \end{array}\right)=\frac{1}{3}\left(\begin{array}{c} -1 \\ 1 \\ 8 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ -2 \\ 2 \end{array}\right)=5 \\ & -x-2 y+2 z=5 \end{aligned}$

Q4
Question
The line l_{1} passes through the point $(1,-1,1)$ and is parallel to the vector $\mathbf{2 i} \mathbf{- 5} \mathbf{j}+\mathbf{3 k}$.
The line l_{2} has equation $x-1=\frac{2 y+4}{4}=-\frac{z}{2}$
Given that the plane Π_{1} contains l_{1} and is parallel to l_{2}
(i) Find the Cartesian equation of the plane Π_{1}
(ii) Find the shortest distance between Π_{1} and l_{2}, leaving your answer in exact form.

The plane Π_{2} has equation $\mathbf{r} .(\mathbf{3 i}-\mathbf{2 k})=\mathbf{1}$
(iii) Find the acute angle between the planes Π_{1} and Π_{2}
(iv) Determine the geometrical relationship between Π_{2} and l_{1}, showing your working clearly.
(v) Hence what can be said about the values of a and b such that there is no solution for the following system of linear equations?

$$
\begin{gathered}
4 x+7 y+9 z=6 \\
3 x-2 z=1 \\
2 x+y-a z=b
\end{gathered}
$$

Ans: (i) equation of plane $4 x+7 y+9 z=6$ (ii) $\frac{16}{\sqrt{146}}$ (iii) 82.1° (iv) Π_{2} contains l_{1} (v) $a=-\frac{1}{3}, b \neq \frac{4}{3}$

Answer

	$\begin{aligned} & \left.=\left(\begin{array}{c} 0 \\ -1 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 7 \\ 9 \end{array}\right) \right\rvert\, \\ & =\frac{\sqrt{146}}{} \\ & =\frac{16}{\sqrt{146}} \end{aligned}$	
(iii)	Let θ be the angle between the two planes. $\begin{aligned} & \cos \theta=\frac{\left(\begin{array}{l} 3 \\ 0 \\ -2 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 7 \\ \sqrt{13} \sqrt{146} \end{array}\right)}{\theta=\frac{6}{\sqrt{13} \sqrt{146}}} \\ & \theta=82.1^{\circ} \end{aligned}$	
(iv)	Note that $(1,-1,1)$ lies on Π_{2} since $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)=1$ Also, note that l_{1} is parallel to Π_{2} since. $\left(\begin{array}{c}2 \\ -5 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)=0$ So Π_{2} contains l_{1}.	
(v)	Since both Π_{1} and Π_{2} contain l_{1}, l_{1} is parallel to the plane $2 x+y-a z=b$	

Q5
Question
The planes p_{1} and p_{2} have Cartesian equations $2 x+y-3 z=-5$ and $5 x-7 y+2 z=-3$ respectively and meet in a line l.
(i) Find the acute angle between p_{1} and p_{2}
(ii) Find a vector equation of l

The line l_{1} passes through the point A with position vector $\mathbf{- 2 k}$, is parallel to p_{1} and is perpendicular to l.
(iii) Explain briefly why l and l_{1} are skew lines.
(iv) Find a vector equation of l_{1}

The plane p_{3} contains l_{1} and is parallel to p_{1}
(v) Find the perpendicular distance between p_{1} and p_{3}
(vi) Hence state the perpendicular distance between l and l_{1}.

Ans: (i) 84.8° (ii) $r=\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ (iv) $r=\left(\begin{array}{c}0 \\ 0 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -5 \\ 1\end{array}\right)$ (v) $\frac{11}{\sqrt{14}}$ (vi) $\frac{11}{\sqrt{14}}$

