Integration and its Application (I)

Q1

Question

Find $S=\int x^{2} \ln x d x$

$$
\begin{gathered}
u=\ln x, \frac{d v}{d x}=x^{2}, \frac{d u}{d x}=\frac{1}{x}, v=\frac{x^{3}}{3} \\
S=\frac{x^{3}}{3} \ln x-\int \frac{x^{2}}{3} d x=\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+c
\end{gathered}
$$

Q2
Find $S=\int e^{x} \tan ^{-1} e^{x} d x$

$$
\begin{aligned}
& \text { Let } u=\tan ^{-1} e^{x}, \frac{d v}{d x}=e^{x}, \frac{d u}{d x}=\frac{e^{x}}{e^{2 x}+1}, v=e^{x} \\
& S=e^{x} \tan ^{-1} e^{x}-\int e^{x} \frac{e^{x}}{e^{2 x}+1} d x \\
& =e^{x} \tan ^{-1} e^{x}-\int \frac{e^{2 x}}{e^{2 x}+1} d x \\
& \int \frac{e^{2 x}}{e^{2 x}+1} d x=\int \frac{\frac{1}{2} \frac{d k}{d x}}{k+1} d x=\frac{1}{2} \ln |k+1|=\frac{1}{2} \ln \left|e^{2 x}+1\right| \\
& S=e^{x} \tan ^{-1} e^{x}-\frac{1}{2} \ln \left|e^{2 x}+1\right|+c
\end{aligned}
$$

Q3

Question

a) $\int \frac{6+2 x}{\sqrt{1-4 x-x^{2}}} d x$
b) The diagram below shows the region R bounded by the curve C with equation $y=\frac{\sqrt{\ln x}}{x}, x \geq 1$, the x-axis and the line L with equation $y=\frac{1}{e(e-2)}(x-2)$. Find the exact volume of the solid of revolution when R is rotated completely about the x-axis

	$=\pi \int_{1}^{\prime} \frac{\ln x}{x^{2}} \mathrm{~d} x-\frac{\pi(e-2)}{3 e^{2}}$
	$=\pi\left[(\ln x)\left(-\frac{1}{x}\right)-\int\left(-\frac{1}{x}\right) \frac{1}{x} \mathrm{~d} x\right]_{1}^{r}-\frac{\pi(e-2)}{3 e^{2}}$
	$=\pi\left[\left(-\frac{\ln x}{x}\right)-\frac{1}{x}\right]_{1}^{e}-\frac{\pi(e-2)}{3 e^{2}}$
	$=\pi\left[1-\frac{2}{e}\right]-\frac{\pi(e-2)}{3 e^{2}}$
	$=\pi-\frac{2 \pi}{e}-\frac{\pi}{3 e}+\frac{2 \pi}{3 e^{2}}$
	$=\pi\left(1-\frac{7}{3 e}+\frac{2}{3 e^{2}}\right)$

Q4

Question

(i) Using the substitution $y=\ln x$, show that $\int(\ln x)^{2} d x=\int y^{2} e^{y} d y$. Hence show that $\int(\ln x)^{2} d x=x\left\{(\ln x)^{2}-2(\ln x)+2\right\}+c$.
(ii) It is given that $f(x)=\left\{\begin{array}{rr}\ln x, & \text { for } 1 \leq x<e \\ 0, & \text { for } e \leq x \leq 3\end{array}\right.$

And that $f(x+2)=f(x)$ for all real values of x.
(a) The region bounded by the curve $y=f(x)$, the x-axis and the line $x=e$ is rotated through 2π radians about the x-axis. Find the exact value of the volume obtained.
(b) Sketch the graph of $y=f(x)$ for $-3 \leq x \leq 4$.

Hence find $\int_{-3}^{4} f(x) d x$

Answer

	$\begin{aligned} \text { Volume } & =\pi \int_{1}^{e}(\ln x)^{2} \mathrm{~d} x \\ & =\pi\left[x\left\{(\ln x)^{2}-2(\ln x)+2\right\}\right]_{1}^{e} \\ & =\pi\left[\left\{\left(e(1)^{2}-2 e+2 e\right)-(2)\right]\right. \\ & =\pi(e-2) \text { units }^{3} \end{aligned}$
10 (ii) (b)	 Method 1: $\begin{aligned} \int_{-3}^{4} f(x) d x & =3 \int_{1}^{e} \ln x d x+\int_{1}^{2} \ln x d x \\ & =3(1)+0.3863 \\ & =3.3863 \\ & =3.39 \end{aligned}$ Method 2: $\begin{aligned} \int_{-3}^{4} \mathrm{f}(x) \mathrm{d} x & =3 \int_{1}^{e} \ln x \mathrm{~d} x+\int_{3}^{4} \ln (x-2) \mathrm{d} x \\ & =3(1)+0.3863 \\ & =3.3863 \\ & =3.39(3 \mathrm{~s} . \mathrm{f}) \end{aligned}$

Q5

Question

Using substitution $x=a \sin \theta$, where a is a positive constant, show that

$$
\int_{\frac{a}{2}}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{a^{2}}{24}(4 \pi-3 \sqrt{3})
$$

An ellipse E has the equation $x^{2}+3 y^{2}=a^{2}$
i) Sketch E, showing clearly the coordinates of any intersections with the axes.
ii) $\quad R$ is the region enclosed by E, the line $y=x$ and the positive x-axis. Find the exact area of R in the form $k \pi a^{2}$.
iii) For $x>0, S$ is the region enclosed by E, the line $y=x$ and the positive y-axis. Using $a=1$, find the numerical value of the volume of the solid formed when S is rotated through 2π radians about the y-axis

Answer

10	$x=a \sin \theta \Rightarrow \frac{d x}{d \theta}=a \cos \theta$
	$\begin{aligned} \int_{\frac{9}{2}}^{a} \sqrt{a^{2}-x^{2}} d x & =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sqrt{a^{2}-(a \sin \theta)^{2}}(a \cos \theta) d \theta \\ & =a^{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left(\cos ^{2} \theta\right) d \theta \end{aligned}$
	$=a^{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{(\cos 2 \theta+1)}{2} d \theta$
	$=\frac{a^{2}}{2}\left[\frac{\sin 2 \theta}{2}+\theta\right]_{\frac{\frac{\pi}{6}}{\frac{\pi}{2}}}$
	$=\frac{a^{2}}{2}\left[\frac{1}{2} \sin \frac{\pi}{2}+\frac{\pi}{2}-\frac{1}{2} \sin \frac{\pi}{3}-\frac{\pi}{6}\right]=\frac{a^{2}}{2}\left[\frac{\pi}{3}-\frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)\right]$

	$=-\frac{1}{8} \sqrt{3 a^{2}}+\frac{\pi}{6} a^{2}=\frac{a^{2}}{24}(4 \pi-3 \sqrt{3})$ (shown)		
10(1)	$x^{2}+3 y^{2}=a^{2} \Rightarrow \frac{x^{2}}{a^{2}} \frac{y^{2}}{\left(\frac{a}{\sqrt{3}}\right)^{2}}=1$		
10(ii)	When $x=y, x^{2}+3 x^{2}=a^{2} \Rightarrow x=\frac{a}{2}$		
	Area of $\mathrm{R}=\int_{\frac{a}{2}} y \mathrm{~d} x+\frac{1}{2}\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)=\frac{1}{\sqrt{3}} \int_{\frac{2}{2}}^{0} \sqrt{a^{2}-x^{2}} d x+\frac{1}{2}\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)$		
	$=\frac{1}{\sqrt{3}}\left[\frac{a^{2}}{24}(4 \pi-3 \sqrt{3})\right]+\frac{a^{2}}{8}$		

Q6

Question

a) Find $\int x \sec ^{2}(x+a) d x$, where a is a constant.
b) Find $\int \frac{x-1}{x^{2}-2 x+2} d x$

Hence find
(i) The exact value of $\int_{1}^{2} \frac{x-4}{x^{2}-2 x+2} d x$
(ii) $\quad \int_{2-p}^{p}\left|\frac{x-1}{x^{2}-2 x+2}\right| d x$ where p is a constant, $p>1$. Leave your answer in terms of p.

Answer

8(a)	$\begin{aligned} & \int x \sec ^{2}(x+a) \mathrm{d} x \\ & =x \tan (x+a)-\int \tan (x+a) \mathrm{d} x \\ & =x \tan (x+a)-\ln \|\sec (x+a)\|+C \\ & \text { OR: } x \tan (x+a)+\ln \|\cos (x+a)\|+C \end{aligned}$
8(b)	$\begin{aligned} \int \frac{x-1}{x^{2}-2 x+2} \mathrm{~d} x & =\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x+2} \mathrm{~d} x \\ & =\frac{1}{2} \ln \left(x^{2}-2 x+2\right)+C \end{aligned}$
$8(b)$ (i)	$\begin{aligned} & \int_{1}^{2} \frac{x-4}{x^{2}-2 x+2} \mathrm{dx} \\ & =\int_{1}^{2} \frac{x-1}{x^{2}-2 x+2} \mathrm{~d} x-\int_{1}^{2} \frac{3}{x^{2}-2 x+2} \mathrm{dx} \\ & =\int_{1}^{2} \frac{x-1}{x^{2}-2 x+2} \mathrm{~d} x-\int_{1}^{2} \frac{3}{(x-1)^{2}+1} \mathrm{dx} \\ & =\frac{1}{2}\left[\ln \left(x^{2}-2 x+2\right)\right]_{1}^{2}-3\left[\tan ^{-1}(x-1)\right]_{1}^{2} \\ & =\frac{1}{2}[\ln 2-\ln 1]-3\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\ & =\frac{1}{2} \ln 2-\frac{3 x}{4} \end{aligned}$
$\begin{aligned} & 8 \text { (b) } \\ & \text { (ii) } \end{aligned}$	$\text { Note that } \frac{x-1}{x^{2}-2 x+2}=\frac{x-1}{(x-1)^{2}+1}$ $\begin{aligned} & \int_{2-p}^{p}\left\|\frac{x-1}{x^{2}-2 x+2}\right\| \mathrm{d} x \\ & =-\int_{2-p}^{1} \frac{x-1}{(x-1)^{2}+1} \mathrm{~d} x+\int_{1}^{p} \frac{x-1}{(x-1)^{2}+1} \mathrm{~d} x \\ & =2 \int_{1}^{p} \frac{x-1}{(x-1)^{2}+1} \mathrm{~d} x \quad \text { (by symmetry) } \\ & =2\left[\frac{1}{2} \ln \left(x^{2}-2 x+2\right)\right]_{1}^{p}=\ln \left(p^{2}-2 p+2\right) \end{aligned}$

Q7

Question

By using the substitution $u=1-x$, show that $\int_{0}^{1} x^{n}(1-x)^{m} d x=\int_{0}^{1}(1-x)^{n} x^{m} d x$
Hence, or otherwise, evaluate $\int_{0}^{1} x^{2} \sqrt{1-x} d x$, express your answer in exact form.

Answer

Q8

Question

A curve has equation given by $y=(\ln x)^{2}-1$, where $x>0$.
(i) Sketch the graph, indicating the exact coordinates of the x-intercepts and the turning point.

The region R is bounded by the curve and the x-axis.
(ii) Find the exact area of R
(iii) Find the volume of the solid generated when R is rotated through 2π radians about the y-axis

Answer

11(i)	 To obtain x-intercepts, let $y=0$ $\begin{aligned} & \Rightarrow(\ln x)^{2}=1 \\ & \Rightarrow \ln x= \pm 1 \\ & \Rightarrow x=\mathrm{e}^{1} \text { or } \mathrm{e}^{-1} \end{aligned}$ To obtain the turning point, find $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \ln x$. Let $\frac{d y}{d x}=0 \Rightarrow 2 \ln x=0 \Rightarrow x=1$ Thus coordinates of turning point is $(1,-1)$.
${ }^{11(i)}$	$\begin{aligned} & \text { Area of region } R \\ & =\int_{e^{-}}^{e}-\left((\ln x)^{2}-1\right) \mathrm{d} x \\ & =-\left[x(\ln x)^{2}\right]_{e^{-1}}^{e}+\int_{e^{-}}^{e} x \frac{2 \ln x}{x} \mathrm{~d} x+[x]_{e^{e}}^{e} \\ & =-\left(\mathrm{e}-\mathrm{e}^{-1}\right)+2\left([x \ln x]_{e^{e}}^{e}-\int_{e^{-1}}^{e} 1 d x\right)+\left(e-e^{-1}\right) \\ & =-\left(e-e^{-1}\right)+2\left(\left(\mathrm{e}+\mathrm{e}^{-1}\right)-\left(\mathrm{e}-\mathrm{e}^{-1}\right)\right)+\left(\mathrm{e}-\mathrm{e}^{-1}\right) \\ & =4 \mathrm{e}^{-1} \end{aligned}$
11(iii)	Make x the subject: $\begin{aligned} & y=(\ln x)^{2}-1 \\ & \Rightarrow \ln x= \pm \sqrt{y+1} \\ & \Rightarrow x=\mathrm{e}^{ \pm \sqrt{y+1}} \end{aligned}$ Thus the volume obtained $\left.=\pi \int_{-1}^{0}\left(\mathrm{e}^{\sqrt{y+1}}\right)^{2}-\left(\mathrm{e}^{-\sqrt{x+1}}\right)^{2} d y=12.2 \quad \text { (to } 3 \text { s.f. }\right)$

Q9

Question

(a) Find $\int \tan ^{-1} x d x$
(b) Find $\int \frac{2 x}{x^{2}+2 x+1} d x$
(c) Use the substitution $x=\frac{1}{u}$ to find the exact value of $\int_{1}^{2} \frac{1}{x \sqrt{x^{2}-1}} d x$

Answer

Q10

Question

A curve C is defined by the parametric equations $x=\cos t, y=\sin 2 t$, for $0 \leq t \leq 2 \pi$.
(i) Sketch the curve, stating the coordinates of any points of intersection with the axes.
(ii) Show that the area enclosed by the curve C is $8 \int_{0}^{\frac{\pi}{2}} \sin ^{2} t \cos t d t$. Given that $\int \sin ^{2} t \cos t d t=\frac{1}{3} \sin ^{3} t+c$, find the exact area enclosed by the curve C.
(iii) By finding the Cartesian equation of C or otherwise, find the volume of revolution formed when the area enclosed by the curve C is rotated completely about the x-axis, giving your answer correct to 3 decimal places.

Answer

Q11

Question

The region enclosed by the curve $y=e^{x} \sin x$ where $0 \leq x \leq \frac{\pi}{2}$, the x-axis and the line $x=\frac{\pi}{2}$ is denoted by A. Find the exact area of A.

Find the volume of revolution when the region bounded by the curves $y=e^{x} \sin x$, $y=x+x^{2}+\frac{1}{3} x^{3}$ and the line $x=\frac{\pi}{2}$ is rotated completely about the x-axis.

Answer

```
Area of \(A=\int_{0}^{\frac{x}{2}} \mathrm{e}^{x} \sin x d x\)
\(=\left[e^{x} \sin x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{x}{2}} e^{x} \cos x d x\)
```



```
\(\cdots 0^{\frac{x}{2}}=\left\{-1+\int_{0}^{\frac{x}{2}} e^{x} \sin x d x\right\}\)
\(2 \int_{0}^{\frac{\pi}{2}} e^{x} \sin x d x=e^{\frac{\pi}{2}}+1\)
\(\int_{0}^{\frac{\pi}{2}} e^{\frac{\pi}{2}} \sin x d x=\frac{1}{2}\left(e^{\frac{\pi}{2}}+1\right)\)
\(\left\lvert\, \begin{aligned} & \text { Volume } \\ & =\pi\left[\int_{0}^{\frac{\pi}{2}}\left(x+x^{2}+\frac{1}{3} x^{x}\right)^{2}-\int_{0}^{\frac{x}{2}}\left(e^{x} \sin x\right)^{2}\right]^{2} d x \\ & =3.19 \text { units }\end{aligned}\right.\)
```

Q12

Question

Find $\int \frac{x}{\left(1+4 x^{2}\right)^{2}} d x$. Hence find $\int \frac{4 x^{2}}{\left(1+4 x^{2}\right)^{2}} d x$

Answer

$\int \frac{x}{\left(1+4 x^{2}\right)^{2}} \mathrm{~d} x$	$=\int \frac{1}{8} \cdot \frac{8 x}{\left(1+4 x^{2}\right)^{2}} \mathrm{~d} x$
	$=-\frac{1}{8}\left(\frac{1}{1+4 x^{2}}\right)+c$
$\int \frac{4 x^{2}}{\left(1+4 x^{2}\right)^{2}} \mathrm{~d} x$	$=\int 4 x \cdot \frac{x}{\left(1+4 x^{2}\right)^{2}} \mathrm{~d} x$
	$=4 x\left(-\frac{1}{8\left(1+4 x^{2}\right)}\right)-\int 4\left[-\frac{1}{8\left(1+4 x^{2}\right)}\right] \mathrm{d} x$
	$=-\frac{x}{2\left(1+4 x^{2}\right)}+\int \frac{1}{2\left(1+4 x^{2}\right)} \mathrm{d} x$
	$=-\frac{x}{2\left(1+4 x^{2}\right)}+\frac{1}{4} \tan ^{-1} 2 x+c$

Q13

Question

A curve has parametric equations
$x=\frac{2}{(1-t)^{2}}, y=\frac{t}{1-t}$, where $t \neq 1$.
(i) Points P and Q on C have parameters p and q respectively such that $p<q$. Point A is a point on C when $t=0$. The normal to C at point P and the normal to C at point Q both pass through point A. Find p and q.
(ii) Find the area of region bounded by C for $y \geq 0$, the line $x=8$ and the x-axis.

Answer

11 (i) Point $A(2,0)$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{4}{(1-t)^{3}} \text { and } \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{1}{(1-t)^{2}} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{1}{(1-t)^{2}}}{\frac{4}{(1-t)^{3}}}=\frac{1}{4}(1-t) \\
& \text { Equation of normal: } y-\frac{t}{1-t}=-\frac{4}{1-t}\left(x-\frac{2}{(1-t)^{2}}\right) \\
& \text { Since the normal at } P \text { and } Q \text { pass through } A \text {, } \\
& 0-\frac{t}{1-t}=-\frac{4}{1-t}\left(2-\frac{2}{(1-t)^{2}}\right) \\
& \frac{8}{(1-t)^{3}}=\frac{8-t}{1-t} \\
& \text { Simplifying, } \\
& t^{2}-10 t^{2}+17 t=0 \\
& t\left(t^{2}-10 t+17\right)=0 \\
& t=0, \quad t^{2}-10 t+17=0 \Rightarrow t=5 \pm 2 \sqrt{2} \\
& \text { Therefore, } p=5-2 \sqrt{2}, \quad q=5+2 \sqrt{2}
\end{aligned}
$$

(ii)

When $x=8$,

$$
\frac{2}{(l-t)^{2}}=8 \Rightarrow t=\frac{1}{2} \text { or } \frac{3}{2}(\text { rejected since } y \geq 0)
$$

Area of region R
$=\int_{2}^{8} y \mathrm{~d} x$
$=\int_{0}^{\frac{1}{2}} \frac{t}{1-t}\left(\frac{4}{(1-t)^{3}}\right) \mathrm{d} t$
$=\int_{0}^{\frac{1}{2}} \frac{4 t}{(1-t)^{4}} \mathrm{~d} t$
$=\frac{10}{3}$ (using GC)

Q14

Question

(i) $\int x^{2} e^{x} d x$
(ii) Hence, find the exact volume of the solid of revolution formed when the region
bounded the curve $y=x e^{\frac{1}{2} x}$, the line $y=2 e, x=3$ and the x-axis is rotated through 4 right angles about the x-axis.

Answer

3 (i)		$u=x^{2}$	$\frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{x}$
$\int x^{2} \mathrm{e}^{x} \mathrm{~d} x$	$=x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x+C^{\prime}$	$\frac{\mathrm{d} u}{\mathrm{~d} x}=2 x$	$v=e^{x}$
	$=x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x\right)+C^{\prime}$	$u=x$	$\frac{\mathrm{~d} v}{\mathrm{dx}}=\mathrm{e}^{x}$
	$=x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+C$		$\frac{\mathrm{~d} u}{\mathrm{dx}}=1 \quad v=\mathrm{e}^{x}$
	$=\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+C$		

(ii)

$$
\begin{aligned}
& y=2 \mathrm{e} \quad \Rightarrow x \mathrm{e}^{\frac{1}{2} x}=2 \mathrm{e} \\
& \Rightarrow x=2 \text { (by observation) } \\
& \text { Required volume } \\
& =\pi\left[\mathrm{e}^{x}\left(x^{2}-2 x+2\right)\right]_{0}^{2}+4 \pi \mathrm{e}^{2} \\
& =\pi\left(\mathrm{e}^{2}(4-4+2)-2\right)+4 \pi \mathrm{e}^{2}
\end{aligned}
$$

$=6 \pi \mathrm{e}^{2}-2 \pi$

Q15

Question

(i) Differentiate $\frac{1}{\sqrt{1-4 x^{2}}}$ with respect to x.
(ii) Find $\int \frac{x \sin ^{-1}(2 x)}{\sqrt{\left(1-4 x^{2}\right)^{3}}} d x$

Answer

$\begin{gathered} \hline \text { Qn. } \\ {[\text { Marks] }} \end{gathered}$	Solution
1(i) [2]	$\begin{aligned} \frac{d}{d x}\left(\frac{1}{\sqrt{1-4 x^{2}}}\right) & =-\frac{1}{2}\left(1-4 x^{2}\right)^{-\frac{3}{2}} \cdot(-4)(2 x) \\ & =\frac{4 x}{\sqrt{\left(1-4 x^{2}\right)^{3}}} \end{aligned}$
$\begin{gathered} \hline \text { (ii) } \\ {[3]} \end{gathered}$	$\begin{aligned} & \int \frac{x \sin ^{-1}(2 x)}{\sqrt{\left(1-4 x^{2}\right)^{3}}} \mathrm{dx} \\ = & \int \frac{4 x}{\sqrt{\left(1-4 x^{2}\right)^{3}}} \cdot \frac{1}{4} \sin ^{-1}(2 x) \mathrm{d} x \\ = & \frac{1}{\sqrt{1-4 x^{2}}} \cdot \frac{1}{4} \sin ^{-1}(2 x)-\int \frac{1}{\sqrt{1-4 x^{2}}} \cdot \frac{1}{4} \frac{2}{\sqrt{1^{2}-(2 x)^{2}}} \mathrm{~d} x \\ = & \frac{\sin ^{-1}(2 x)}{4 \sqrt{1-4 x^{2}}}-\frac{1}{4} \int \frac{2}{1^{2}-(2 x)^{2}} \mathrm{~d} x \\ = & \frac{\sin ^{-1}(2 x)}{4 \sqrt{1-4 x^{2}}}-\frac{1}{8} \ln \left\|\frac{1+2 x}{1-2 x}\right\|+C \text { or } \frac{\sin ^{-1}(2 x)}{4 \sqrt{1-4 x^{2}}}-\frac{1}{8} \ln \frac{1+2 x}{1-2 x}+C \end{aligned}$

Q16

Question

(i) Find $\int x \sin x d x$.
(ii) Sketch the graph $y=x \sin x$ for $0 \leq x \leq k \pi$ where $1<k<\frac{3}{2}$

It is given that $\int_{0}^{k \pi}|x \sin x| d x=\frac{4}{3} \pi+\frac{\sqrt{3}}{2}$ where k is a constant such that $1<k<\frac{3}{2}$. Find the exact value of k.

Answer

Question 3 [8 Marks)	
i	$\begin{aligned} & \begin{array}{l} \begin{array}{l} u=x \\ \frac{\mathrm{~d} u}{\mathrm{dr}}=1 \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin x \end{array} \\ \begin{aligned} \int x \sin x \mathrm{~d} x & =-x \cos x+\int \cos x \mathrm{~d} x \end{aligned} \\ = \\ =-x \cos x+\sin x+c \end{array} \end{aligned}$
ii	$\int_{0}^{\mathrm{Ln}}\|x \sin x\| \mathrm{d} x=\frac{4}{3} \pi+\frac{\sqrt{3}}{2}$ Using GC to observe the graph of $y=x \sin x$, we see that it is above the x-axis from 0 to π and below from π to $k \pi$ where $1<k<\frac{3}{2}$. Comparing the term without the factor π, $\begin{aligned} & \sin (k \pi)=-\frac{\sqrt{3}}{2} \\ & \Rightarrow k \pi=\frac{4 \pi}{3}, \frac{5 \pi}{3} \\ & \Rightarrow k=\frac{4}{3} \text { or } \frac{5}{3} \end{aligned}$ Since $1<k<\frac{3}{2}, \therefore k=\frac{4}{3}$

Q17

Question

It is given that $f(x)=\left\{\begin{array}{cl}a x & \text { for } 0 \leq x \leq a \\ 2 a^{2}-a x & \text { for } a<x<2 a\end{array}\right.$
And that $f(x+2 a)=\frac{1}{2} f(x)$ for all real values of x where a is a positive real constant.
(i) Sketch the graph of $y=f(x)$ for $-2 a \leq x \leq 4 a$
(ii) Show that the exact value of $\int_{0}^{2 a} f(x) d x=k a^{3}$, where k is a constant to be determined.
(iii) Hence, evaluate exactly, in forms of $a, \int_{0}^{\infty} f(x) d x$.

Answer

Question 7 [7 Marks]

i	
ii	$\begin{aligned} \int_{0}^{2 a} \mathrm{f}(x) \mathrm{d} & =\int_{0}^{a} a x \mathrm{~d} x+\int_{0}^{2 a} 2 a^{2}-a x \mathrm{~d} x \\ & =\left[\frac{a x^{2}}{2}\right]_{0}^{a}+\left[2 a^{2} x-\frac{a x^{2}}{2}\right]_{0}^{2 a} \\ & =\frac{a^{3}}{2}+\left[4 a^{3}-\frac{4 a^{3}}{2}-2 a^{3}+\frac{a^{3}}{2}\right] \\ & =a^{3} \end{aligned}$ So $k=1$. Alternatively, $\begin{aligned} \int_{0}^{2 a} f(x) \mathrm{dx} & =\frac{1}{2}(2 a)\left(a^{2}\right) \\ & =a^{3} \end{aligned}$ So $k=1$.
iii	$\begin{aligned} & \int_{0}^{-} \mathrm{f}(x) \mathrm{dx} \\ & =\frac{1}{2}(2 a)\left(a^{2}\right)+\frac{1}{2}(2 a)\left(\frac{1}{2} a^{2}\right)^{2}+\frac{1}{2}(2 a)\left(\left(\frac{1}{2}\right)^{2} a^{2}\right)+\ldots \\ & =a^{3}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\ldots\right) \\ & =a^{3} \cdot \frac{1}{1-\frac{1}{2}} \\ & =2 a^{3} \end{aligned}$

Q18

Question

A curve C has parametric equation

$$
x=1-\cos t, \quad y=\frac{1}{2} \sin (2 t), \quad \text { for } \quad 0 \leq t \leq \frac{\pi}{2}
$$

(i) Sketch C, stating the coordinates of any points of intersection with the axes.
(ii) Find the equation of the normal to C at the point where $t=\frac{\pi}{3}$.
(iii) The region R is bounded by the part of the curve C where $0 \leq t \leq \frac{\pi}{6}$, the x-axis, and the vertical line $x=\alpha$ where $\alpha=1-\cos \frac{\pi}{6}$. Find the exact area of R.
(iv) Determine a Cartesian equation of C, and use it to find the numerical value of the volume of revolution when R is rotated completely about the x-axis.

Answer

	ion 12 [12 Marks]
i	
ii	$\begin{aligned} & x=1-\cos t \Rightarrow \frac{d x}{d t}=\sin t \\ & y=\frac{1}{2} \sin (2 t) \Rightarrow \frac{d y}{d t}=\frac{1}{2}(2) \cos (2 t)=\cos (2 t) \\ & \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\cos (2 t)}{\sin t} \end{aligned}$ At $t=\frac{\pi}{3}$, $\begin{aligned} & x=1-\cos \frac{\pi}{3}=1-\frac{1}{2}=\frac{1}{2} \text { and } \\ & y=\frac{1}{2} \sin \left(2 \cdot \frac{\pi}{3}\right)=\frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4} \\ & \frac{d y}{d x}=\frac{\cos \left(\frac{2 \pi}{3}\right)}{\sin \left(\frac{\pi}{3}\right)}=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}} \end{aligned}$ So, equation of normal is $\begin{aligned} & y-\frac{\sqrt{3}}{4}=\sqrt{3}\left(x-\frac{1}{2}\right) \\ & y-\frac{\sqrt{3}}{4}=\sqrt{3} x-\frac{\sqrt{3}}{2} \\ & \therefore y=\sqrt{3} x-\frac{\sqrt{3}}{4} \end{aligned}$

iv Finding Cartesian equation:

Method 1
$x=1-\cos t \Rightarrow \cos t=1-x \Rightarrow t=\cos ^{-1}(1-x)$
$y=\frac{1}{2} \sin (2 t)$
$y=\frac{1}{2} \sin \left(2 \cos ^{-1}(1-x)\right)$

Method 2
$x=1-\cos t$
$\Rightarrow \cos t=1-x$
$\Rightarrow \sin t=\sqrt{1^{2}-(1-x)^{2}}$
$\Rightarrow \sin t=\sqrt{2 x-x^{2}}$

$y=\frac{1}{2} \sin (2 t)$
$y=\sin t \cos t$
$\therefore y=\sqrt{2 x-x^{2}} \cdot(1-x)$

Method 3

$x=1-\cos t \Rightarrow \cos t=1-x$
$y=\frac{1}{2} \sin (2 t)=\sin t \cos t$
$\Rightarrow y=\sin t \cdot(1-x)$
$\Rightarrow \frac{y}{1-x}=\sin t$
$\sin ^{2} t+\cos ^{2} t=1$
$\Rightarrow\left(\frac{y}{1-x}\right)^{2}+(1-x)^{2}=1$
$\therefore y^{2}=(1-x)^{2}-(1-x)^{4}$
Required volume

$$
\begin{aligned}
& =\pi \int_{0}^{a} y^{2} \cdot \mathrm{~d} x \\
& =\pi \int_{0}^{1-\cos \frac{\pi}{6}} y^{2} \mathrm{~d} x \\
& =\pi \int_{0}^{1-\cos \frac{x}{6}} y^{2} \mathrm{~d} x \\
& =0.0447829016 \\
& =0.0448 \quad \text { (3 s.f) }
\end{aligned}
$$

