Question

By using the substitution u = 1 - x, show that $\int_0^1 x^n (1 - x)^m dx = \int_0^1 (1 - x)^n x^m dx$ Hence, or otherwise, evaluate $\int_0^1 x^2 \sqrt{1 - x} dx$, express your answer in exact form.

Answer

```
2. From u = 1 - x, \frac{du}{dx} = -1.

Limits: when x = 0, u = 1, and when x = 1, u = 0.

Therefore \int_{0}^{1} x^{n} (1 - x)^{m} dx = \int_{0}^{0} (1 - u)^{n} u^{m} (-du)

= \int_{0}^{1} (1 - u)^{n} u^{m} du

= \int_{0}^{1} (1 - x)^{n} x^{m} dx (by a change of dummy variables)

By substituting n = 2 and m = \frac{1}{2} into the previous result:

\int_{0}^{1} x^{2} (1 - x)^{\frac{1}{2}} dx = \int_{0}^{1} (1 - x)^{2} x^{\frac{1}{2}} dx

= \int_{0}^{1} (1 - 2x + x^{2}) x^{\frac{1}{2}} dx

= \int_{0}^{1} x^{\frac{1}{2}} - 2x^{\frac{2}{2}} + x^{\frac{2}{2}} dx

= \left[\frac{2}{3} x^{\frac{2}{2}} - \frac{4}{5} x^{\frac{2}{2}} + 7x^{\frac{2}{2}}\right]_{0}^{1} = \frac{16}{105}
```

Q2

Question

(a)

- (i) Show that $(k + 1)! k k! (k 1) = k! (k^2 + 1)$.
- (ii) Hence find $\sum_{k=1}^{n} k! (k^2 + 1)$
- (iii) Using your answer in part (ii), find $\sum_{k=1}^{n-1} (k+1)! (k^2 + 2k + 2)$.
- (b) The graph of $y = e^{2x+1}$, for $0 \le x \le 1$, is shown in the diagram. Rectangles of equal width are drawn as shown in the interval between x = 0 and x = 1.

- (i) Show that the total area of all the *n* rectangles, *A*, is given by $\frac{e}{n} (\frac{e\overline{n}(1-e^2)}{1-e\overline{n}})$.
- (ii) By considering the area under the curve $y = e^{2x+1}$, find the exact value of the limit of A as $n \to \infty$

Q1

(iii) Hence show that $\frac{e^{\frac{2}{n}}}{n(e^{\frac{2}{n}}-1)} > k$, where k is a constant to be found. Find the largest possible value of k.

Answer

Q3

Question

The curve C_1 has equation $\frac{x^2}{4} + y^2 = 1$. The curve C_2 has equation $\frac{x^2}{4} - y^2 = 1$.

- (i) Sketch C_1 and C_2 on the same diagram, labelling clearly the exact coordinates of the point(s) of intersection with the axes and the equation(s) of the asymptote(s), if any.
- (ii) Find the volume of revolution when the region bounded by C_1 , C_2 and the line y = 1 for $x \ge 0$ is rotated completely about the *x*-axis. Give your answer correct to 4 decimal places.
- (iii) By using a substitution of the form $x = a \cos \theta$, where a is a positive constant and $0 \le \theta \le \frac{\pi}{2}$, find the exact area bounded by C_1 , the positive x-axis and the line x = 1.

Answer

Q4

Question

It is given that $f(x) = \begin{cases} ax & for \ 0 \le x \le a \\ 2a^2 - ax & for \ a < x < 2a \end{cases}$

And that $f(x + 2a) = \frac{1}{2}f(x)$ for all real values of x where a is a positive real constant.

- (i) Sketch the graph of y = f(x) for $-2a \le x \le 4a$
- (ii) Show that the exact value of $\int_0^{2a} f(x) dx = ka^3$, where k is a constant to be determined.
- (iii) Hence, evaluate exactly, in forms of a, $\int_0^{\infty} f(x) dx$.

Answer

Q5

Question

A curve C has parametric equation

$$x = 1 - \cos t$$
, $y = \frac{1}{2}\sin(2t)$, for $0 \le t \le \frac{\pi}{2}$

- (i) Sketch *C*, stating the coordinates of any points of intersection with the axes.
- (ii) Find the equation of the normal to *C* at the point where $t = \frac{\pi}{3}$.

- (iii) The region *R* is bounded by the part of the curve *C* where $0 \le t \le \frac{\pi}{6}$, the *x*-axis, and the vertical line $x = \alpha$ where $\alpha = 1 \cos \frac{\pi}{6}$. Find the exact area of *R*.
- (iv) Determine a Cartesian equation of *C*, and use it to find the numerical value of the volume of revolution when *R* is rotated completely about the *x*-axis.

Answer

Q6

Question

(a) The curve C is defined by the parametric equations

$$x = \ln t$$
, $y = \frac{t^3 + t}{t+1}$, where $t > 0$.

Another curve *L* is defined by the equation $y = e^{2x}$. The graphs of *C* and *L* are shown in the diagram below.

Find the exact area of the region bounded by *C*, *L* and the line $x = \ln 2$, giving your answer in the form $\ln b$ where *b* is a constant to be determined.

(b) The curves V and W have equations $2y = (x - 1)^2 + 4$ and $y = 2x^2$ Respectively. The region in the first quadrant enclosed by the curves and the y-axis is denoted by S.

Find the exact volume of the solid generated when the region S is rotated through 2π radians about the y-axis.

Answer

	Required Volume = $\pi \left[\int_{0}^{2} \frac{y}{2} dy + \int_{2}^{\frac{5}{2}} \left(1 - \sqrt{2y - 4} \right)^{2} dy \right]$
	$=\pi\left\{\left[\frac{y^{2}}{4}\right]_{0}^{2}+\int_{2}^{\frac{5}{2}}\left(1-2\sqrt{2y-4}+2y-4\right)dy\right\}$
	$=\pi+\pi\int_{2}^{\frac{5}{2}} \left(-2\sqrt{2y-4}+2y-3\right) dy$
	$=\pi + \pi \left[\frac{-2(2y-4)^{\frac{3}{2}}}{2(\frac{3}{2})} + y^2 - 3y \right]_{1}^{\frac{3}{2}}$
	$=\pi+\pi\left[-\frac{2}{3}(2y-4)^{\frac{3}{2}}+y^2-3y\right]_2^{\frac{5}{2}}$
	$=\pi+\pi\left[\left(-\frac{2}{3}\left(2\left(\frac{5}{2}\right)-4\right)^{\frac{3}{2}}+\left(\frac{5}{2}\right)^{2}-3\left(\frac{5}{2}\right)\right)-\left(-\frac{2}{3}\left(2\left(2\right)-4\right)^{\frac{3}{2}}+\left(2\right)^{2}-3\left(2\right)\right)\right]$
	$=\pi+\frac{\pi}{12}$
1	$=\frac{13\pi}{12}$ cubic units

Q7

Question

(a)

- (i) By using a graphic calculator, find the x-coordinates of the points of intersection of the curves $y = e^x$ and y = 2x + 1. Hence solve the inequality $e^x < 2x + 1$ Hence solve the inequality $e^x < 2x + 1$.
- (ii) Hence, find the exact value of $\int_{-2}^{1} |e^x 2x 1| dx$

(b) Find
$$\int \frac{2x+1}{x^2-4x+7} dx$$

(c) Find $\int \frac{1}{x^2 - 4x + 7} dx$ (c) Find $\int (\sin x) \ln(\cos x) dx$

Answer

2	 (a) (i) By using a graphic calculator, find the x-coordinates of the points of intersection of the curves y = e^x and y = 2x+1. 		$ = \left[e^{x} - x^{2} - x \right]_{-2}^{0} - \left[e^{x} - x^{2} - x \right]_{0}^{1} $
	Hence solve the inequality $e^x < 2x + 1$.	[2]	$=6-e^{-2}-e$
	(ii) Hence, find the exact value of $\int_{-2}^{1} e^x - 2x - 1 dx$.	[3]	(b) $\int \frac{2x+1}{x^2-4x+7} dx = \int \frac{2x-4+5}{x^2-4x+7} dx$
	(b) Find $\int \frac{2x+1}{x^2-4x+7} dx$.		$\int \int \frac{2x-4}{x^2-4x+7} dx + \int \frac{5}{(x-2)^2+3} dx$
	(c) Find $\int \sin x \ln (\cos x) dx$.	[2]	
	Solution (ai) $x = 0$ or $x = 1.26$		$= \ln\left(x^2 - 4x + 7\right) + \frac{5}{\sqrt{3}} \tan^{-1}\left(\frac{x - 2}{\sqrt{3}}\right) + c$
	0 <x<1.26< td=""><td></td><td>(c) $\int \sin x \ln (\cos x) dx = -\cos x \ln (\cos x) - \int (-\cos x) \left(\frac{-\sin x}{\cos x} \right) dx$</td></x<1.26<>		(c) $\int \sin x \ln (\cos x) dx = -\cos x \ln (\cos x) - \int (-\cos x) \left(\frac{-\sin x}{\cos x} \right) dx$
	$e^{x}-2x-1<0$ for $0 and e^{x}-2x-1>0 for -2$		
	(ii) $\int_{-2}^{1} e^x - 2x - 1 dx = \int_{-2}^{0} (e^x - 2x - 1) dx - \int_{0}^{1} (e^x - 2x - 1) dx$		$= -\cos x \ln (\cos x) - \int \sin x dx$ $= -\cos x \ln (\cos x) + \cos x + C$